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Note 

Partial lmplicitization 

The steady-state solution of a simplified form of the governing equations of fluid 
mechanics has been obtained for a wide variety of flows; however, the steady-state 
solution to the full Navier-Stokes equations for complicated flows is generally 
much more difficult to obtain. Currently solutions to the Navier-Stokes equations 
are generally obtained through some form of time marching to the steady-state. 
Examples of currently used techniques can be found in Refs. [l-4]. The time- 
dependent form of these equations takes a relatively large number of time steps to 
reach steady state for the maximum time step is restricted by a stability limit. With 
a number of different time-dependent methods available, a way of judging the 
relative merits of a particular method is to use Burgers equation (see [5]) as a 
model of the Navier-Stokes equations (see Refs. [3,4, 6, and 7]), for Burgers 
equation is simpler yet similar in structure to the Navier-Stokes equations. In 
finite-difference form, it is easier to resolve the stability, accuracy, and convergence 
rate of Burgers equation than the full Navier-Stokes equations. 

In Ref. 131, three frequently used techniques were tested using Burgers equation; 
however, in all three methods, the maximum time step is limited by their 
corresponding stability limit. If the stability criterion were to be relaxed, then the 
solution could proceed to the steady state in fewer steps, thus speeding convergence. 

In the following paragraphs, Burgers equation will be used as a model to test an 
explicit numerical technique which will be shown to be unconditionally stable. The 
method to be developed below is a one-step explicit technique resulting from a 
partial implicitization of the difference equation. The stability analysis will show 
that the technique is unconditionally stable and numerical tests will show the 
technique to be accurate. 

The method will be demonstrated through the use of Burgers equation, 

This equation was introduced by Burgers [5] in an attempt to develop a model of 
free turbulence; however, in the present application, Eq. (1) will be used to model a 
diffuse shock wave through the application of the following boundary conditions: 

l-7(x, t) = 1, x+-q 
U(x, r) = 0, x-++aL 
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Since only the steady-state solution is desired, the following wave oriented trans- 
formation is applied to Eq. (1): 

?j = x - i-j,, 

z = t, 

where i? is the steady-state wave speed. Equation (1) becomes 

where U,, = U - iJ and the wave speed i7 = 4. 
The boundary conditions under the transformations become, 

U(T), i) = 1 for 77 + -co, 

U(r), rn) = 0 for n-) +oo. 

(2) 

The steady-state solution to Eq. (2) subject to the above boundary conditions is 

Z/(v) = $(I - tanh(gl4v)). (3) 

Equation (2) can be expressed in finite-difference form using a backward 
difference on the time term and central differences on the spatial terms. The spatial 
differences are written at the advanced time as in a fully implicit procedure 

#+I - uj N + Tj( ui”+:’ - Ui”-:‘) - S( uj”,:’ - 2 uy + Uj”-:‘) = 0, (4) 

where 
rj = U,,$ A2/2Aq, 

S = v Af/Aq2. 

Equation (4) reduces to 

-(ri + S) Uj”-‘;’ + (I + 2s) UiN+l - (S - rj) Uj”,:’ = UjN. (5) 

Equation (4) is written at points J - I, J, and J + I; however, the points J - 2 and 
J + 2 are considered explicitly. The system of three simultaneous equations is of 
the form 

Point J - 1 

(1 + 2s) UZ’ - (S - Tj-l) UjN+l = uj”-, + (Tj-1 + S) UEB , 
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Point J 

-(rj + S) Uj”_:l + (1 + 2s) LljN+l - (S - rj) Uj”,:’ = lJjN, 

Point J t 1 

-(rj+l + S) LljN+1 + (I + 2s) U,“,:’ = UZl + (S - rj+J U& , 

To obtain the solution at point J we use Cramer’s rule (see Ref. [S]) which gives 
an equation which will be used at all interior points in the finite-difference mesh 
except for the two points immediately adjacent to the boundaries. At these points, 
the above system is solved to obtain equations for UjN_:1 and UT:. Note that the 
equations for UFll and r/j”,:’ are used only for the two points adjacent to the 
boundary. 

The solution using Cramer’s rule is obtained from 

(1 + 2s) (UC, + (rjpl + S) Uj”-,) 
-(rj + S) N -(SO- .) 

&?+L 0 (UL, + (SuL rj+3 Uj”,,) (1 + 2;; 
(1 + 2s) -(S - rj-l) 
-(rj + S) (1 + 2s) -(So- rj) 

0 -(rj+l + S) (1 + 2.9) 
The result is 

ujN+l = R(1 + 2s) Uj” + (S - rj) ULl + (S - rj)(S - ri+l) UK2 

+ (rj + S) UL + (rj + S)(r,-, + S) L$t2 , (6) 
where 

’ = (1 + 2S)2 - {(S - rj)(rj+l ‘+ S) + (S - rj-l)(rj + S)} ’ (64 

Equation (6) now involves five points from the previous time level only, hence, 
Eq. (6) is an explicit equation obtained from partial implicilization of the difference 
form of the governing equation. 

The stability analysis of Eq. (6) will be performed using a linearized von Neumann 
analysis. Following Ref. [4], a finite Fourier series expansion to Eq. (6) will be 
made with the Fourier components of the form 

U,N = yNeiK,,(JAn) 
3 (7) 

Defining the phase angle as 0 = K,Aq Eq. (7) becomes 

u.N = pV&jE 
, (8) 
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Substituting the appropriate forms of Eq. (8) into Eq. (6) results in 

vv+l = VND{( I + 2s) + 2s cos 8 + 257 cos 28 

+ 2r2 cos 28 - 2irS sin 8 - 4irS sin 28). 

Looking first at Eq. (6a) 

(9) 

D = I/(1 + 4S + 2S2 f 2r2). (94 

Since 0 < S < + co and -cc < r < + cc then the denominator of D, Eq. (9a), 
is always greater than zero, and, hence, no singularity exists in Eq. (9). 

Defining G = VN+l/VN Eq. (9) becomes 

G= D{l +2S+2Scos8+2S2cos28+2r*cos28 

- 2ir sin 8 - 4irS sin 28). 

The von Neumann condition for stability requires 

with the result that Eq. (10) becomes 

(10) 

(11) 

/ G I = D{8S2r2 cos2 28 + (1 + 2S)2 + 4S(1 + 2s) cos 8 

+ 4S2(I + 2s) cos 28 + 4r2( 1 + 2s) cos 28 

+ 4S2 cos2 8 + 8S3 cos 8 cos 28 + 4S4 cos2 28 

+ 8Sr2 cos 8 cos 28 + 4r4 cos2 28 

+4r2 sin2 8 + 16r2S sin 8 sin 28 

+ 16r2S2 sin2 28)‘l”. w 

Since Eq. (12) is rather complicated, first consider the simpler limits of (S = 0, 
r f 0) and (S # 0, r = 0). 

For (S = 0, r # 0) Eq. (12) becomes 

, G , = (1 + 4r2 cos2 8 + 4r4 cos2 28)lj2 
1 + 2r2 (13) 

The maximum value of Eq. (13) occurs at 8 = 0 giving 

, G , = (I + 4r2 + 4r4Y2 
1 + 2r2 

-=. , 
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Thus, Eq. (12) satisfies the von Neumann stability criterion in the limit (S = 0, 
r # 0). Similarly it can be shown when (S # 0, r = 0) 

lGl= 
(1 + 8S + 20S2 + 16S3 + 4P)l” = 1 

1 + 4s + 2P 

Equation (12) satisfies the von Neumann stability criterion in both sets of limits, 
implying Eq. (6) is stable for all df in the limit conditions. By numerical evaluation 
it was determined that the maximum of Eq. (12) occurs at B = 0 giving 

, G , = (1 + 8S + 20S2 + 16S3 + 4S4 + 16Sr2 + 8S2r2 + 4r2 + 4r4}‘;2 
1 + 4S + 2S2 + 2r2 , 

IGI=l. 

Thus, Eq. (12) satisfies the stability criterion for all dl, and, hence, Eq. (6) is an 
unconditionally stable solution for Eq. (1). 

Equation (6) and the two additional relations for UrI1 and Uyt (to be used 
adjacent to the boundaries) were programmed for numerical solution over the 
range -5 < 7 < 5 with v = l/8 and dq = 0.1. Additionally the simple explicit 
form of Eq. (1) was programmed using the same range and initial conditions. The 
explicit solution was run at 90 % of the stability limit. A comparison of the results 
is given in the following table. The partially implicit result was obtained with 
dl = 36 (900 times the explicit limit). 

7) Exact 
Partially 
implicit Explicit 

-0.7 0.94267 0.94471 0.94471 
-0.6 0.91683 0.91929 0.91929 
-0.5 0.88079 0.88363 0.88363 
-0.4 0.83202 0.83505 0.83505 
-0.3 0.76852 0.77143 0.77143 
-0.2 0.68997 0.6923 1 0.6923 I 
-0.1 0.59868 0.60000 0.60000 

0 0.50040 0.5OoOO 0.5OoOO 
0.1 0.40131 0.4OOOo 0.40000 
0.2 0.3 1003 0.30769 0.30769 
0.3 0.23147 0.22857 0.22857 
0.4 0.16798 0.16495 0.16495 
0.5 0.11920 0.11636 0.11636 
0.6 0.08317 0.08071 0.08071 
0.7 0.05324 0.05529 0.05529 
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The partially implicit results are to five decimal places identical to the explicit 
results indicating that in the partial implicitization process no additional trunca- 
tion errors of any significance have been introduced. The explicit solution took 
549 time steps while the partially implicit result took only I47 to reach steady state. 

The use of partial implicitization, while demonstrated for Burgers equation, is 
not limited only to this particular case but can be applied in principle to similar 
problems, including the Navier-Stokes equations. 
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